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Velocity measurements using hot wires are performed across a high-Reynolds-number
turbulent plane wake, with the aim of studying the subgrid-scale (SGS) stress and
its modelling. This quantity is needed to close the filtered Navier–Stokes equations
used for large-eddy simulation (LES) of turbulent flows. Comparisons of various
globally time-averaged quantities involving the measured and modelled SGS stress
are made, with special emphasis on the SGS energy dissipation rate. Experimental
constraints require the analysis of a one-dimensional surrogate of the SGS dissipation.
Broadly, the globally averaged results show that all models considered, namely the
Smagorinsky and similarity models, as well as the dynamic Smagorinsky model,
approximately reproduce profiles of the surrogate SGS dissipation. Some discrepancies
near the outer edge of the wake are observed, where the Smagorinsky model slightly
overpredicts, and the similarity model underpredicts, energy dissipation unless the
filtering scale is about two orders of magnitude smaller than the integral length scale.

A more detailed comparison between real and modelled SGS stresses is achieved
by conditional averaging based on particular physical phenomena: (i) the outer
intermittency of the wake, and (ii) large-scale coherent structures of the turbulent
wake. Thus, the interaction of the subgrid scales with the resolved flow and model
viability can be individually tested in regions where isolated mechanisms such as outer
intermittency, vortex stretching, rotation, etc., are dominant. Conditioning on outer
intermittency did not help to clarify observed features of the measurements. On the
other hand, the large-scale organized structures are found to have a strong impact
upon the distribution of surrogate SGS energy dissipation, even at filter scales well
inside the inertial range. The similarity model is able to capture this result, while the
Smagorinsky model gives a more uniform (i.e. unrealistic) distribution. Both dynamic
Smagorinsky and similarity models reproduce realistic distributions, but only if all
filter levels are contained well inside the inertial range.

1. Introduction
In large-eddy simulation (LES) of incompressible turbulent flow one seeks solutions

to the filtered Navier–Stokes equations, which requires the subgrid-scale (SGS) stress
tensor to be parameterized as function of the resolved velocity field. The SGS tensor
is defined according to

τij ≡ ũiuj − ũiũj , (1)
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where the tilde represents spatial filtering at a scale ∆. There is a significant body of
literature on the subject of SGS modelling for LES, e.g. Lilly (1967), Deardorff (1970),
Leonard (1974), Kraichnan (1976), Bardina, Ferziger & Reynolds (1980). Comprehen-
sive reviews are given in Rogallo & Moin (1984) and, more recently, Lesieur & Métais
(1996). The SGS stress τij is a strongly fluctuating variable whose basic properties
and its relationship with the large scales of the flow must be understood in order to
formulate accurate parameterizations.

Given a fully resolved field, the stress can be computed according to its definition,
equation (1). This allows SGS stresses computed by filtering fully resolved turbulent
fields to be compared with model expressions also evaluated from resolved velocity
fields (Clark, Ferziger & Reynolds 1979; Piomelli, Moin & Ferziger 1988). Such a
priori studies of SGS modelling have, in the past, concentrated mainly on isotropic
turbulence (e.g. Clark et al. 1979; Domaradski, Liu & Brachet 1993), and planar
channel flow (e.g. Piomelli et al. 1988; Härtel et al. 1994). The data were mostly
obtained from direct numerical simulation (DNS) at low Reynolds number (Rλ ∼ 100).
Experimental data at higher Reynolds numbers (Rλ ∼ 300) have also been analysed
for the purpose of a priori studies (Liu, Meneveau & Katz 1994). There, two-
dimensional particle-image-velocimetry (PIV) measurements were performed in the
far field of a round jet about the jet axis, where the turbulence statistics are not
far from homogeneous. Hot-wire measurements in grid turbulence (Rλ ∼ 150) were
analysed in Meneveau (1994). Several conclusions have been reached from such a
priori studies. Among them has been the realization that on an instantaneous basis
the eddy-viscosity closures do not properly reproduce the real stresses, while the
similarity models (to be described in detail below) yield more realistic distributions.
However, on average the traditional eddy-viscosity models were shown to predict the
correct rate of energy dissipation in turbulent regions away from walls. Measured
model coefficients agreed approximately with traditional values. Quite importantly, it
was shown based on the data that the dynamic procedure (Germano et al. 1991) is
able to extract such coefficients from information contained in the resolved scales.

The motivation for the present study is to extend such experimental a priori studies
to include more of the flow complexities typically encountered in turbulent shear
flows. In particular, we wish to capture effects of non-homogeneity of flow statistics
on properties of the SGS stress. In addition to average spatial non-homogeneity, free
shear flows are characterized by several important features of the instantaneous fields.
Among these are outer intermittency, the coexistence of turbulent and irrotational
flow near the shear layer’s edges, and the existence of well-defined large-scale coherent
structures. One would like to know how the real SGS stress τij , the models, and other
variables of interest for LES, respond to the presence of such phenomena at high
Reynolds numbers. Outer intermittency and large-scale coherent structures are not
ubiquitous in grid turbulence or fully developed channel flows, and were not available
from the PIV data in the inner portion of the far-field jet studied in Liu et al. (1994).

In this study we focus on the planar wake behind a circular cylinder. Measurements
will be performed across a significant portion of the wake, in order to capture the
spatial non-homogeneity of this flow. The wake includes the phenomena of outer
intermittency, as well as large-scale coherent structures.

A primary issue concerns characterizing fundamental features of the SGS stress and
the applicability of different SGS models. One approach is to examine features of an
instantaneous realization of real and modelled fields, e.g. the SGS dissipation field. The
comparison can be based on the correlation coefficient of the actual and modelled SGS
dissipation across the field. While much can be learned from this approach, partial
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agreement of local instantaneous features does not provide a sufficient (or necessary)
condition for the proper modelling of the subgrid scales. Another possibility is to
compare mean values, by averaging over very long times. Agreement between certain
averaged quantities can be shown to yield necessary conditions (Meneveau 1994)
that a model should reproduce. However, a few average values contain only limited
information about the SGS stress. To completely describe turbulence subgrid scales
and the models with statistics requires, in principle, an infinite number of multipoint
joint moments.

A more focused comparison based on isolated physical mechanisms can be made
by conditional averaging. As mentioned before, an important phenomenon in the
wake is outer intermittency, consisting of the coexistence of turbulent and irrotational
flow, especially at the wake’s edges (Corrsin & Kistler 1955). Another important
phenomenon in this flow is the presence of large-scale coherent structures. There
has been a large body of work documenting the existence of coherent structure in
canonical shear flows, and in the cylinder wake in particular (Hussain & Hayakawa
1987; Cantwell 1981). Instead of only calculating global averages, one may use
coherent structure and/or outer intermittency, and conditionally average on these
phenomena to disentangle different large-scale flow phenomena, and study properties
of the SGS stress and models under such more clearly defined conditions.

In a recent DNS study of channel flow, Piomelli, Yu & Adrian (1996) used the
SGS dissipation as a criterion for conditional averaging. Conditional flow structures
were obtained whenever the local SGS dissipation exceeded a positive (or negative)
value. They concluded that the interscale energy transfer is highly correlated with the
presence of structures. If this feature is a general property of the relationship between
large-scale coherent structures and SGS dynamics, then the assumption of universality
of small-scale motion may be less justified. We will examine this issue in the context
of the plane wake. In this flow, the most ubiquitous large-scale coherent structures are
the vortices in the Kármán-vortex street. They are visible in the near and so-called
intermediate field, maybe up to 30 diameters downstream of the cylinder, even at very
large Reynolds numbers. Those large-scale structures are characterized by different
regions, ranging from vortex cores to highly strained saddle points.

In order to accurately measure conditional averages, extensive data must be avail-
able at every sampling point. This can be accomplished by using traditional thermal
anemometry. Of course hot-wire data are severely limited compared to more recent
multidimensional measurement techniques such as particle image velocimetry (Adrian
1991; Liu et al. 1994), in the sense that Taylor’s hypothesis must be used, and that it
gives only one-dimensional sections through the flow. On the other hand, very long
data records required for converged statistics can be obtained at selected points with
hot wires, which is still difficult when using PIV.

Arguably the most important feature of the subgrid-scale stress is how it affects
the kinetic energy of the resolved field. Thus, energy dissipation arising from the
interactions between subgrid and resolved scales is the main focus of this study. In
order to more concretely formulate the questions to be addressed, the concept of SGS
energy dissipation is briefly reviewed below. This is followed by a review of the basic
models to be considered.

1.1. Subgrid-scale energy dissipation

The SGS stress tensor has profound effects on the energetics of the resolved flow field,
as can be deduced from the resolved kinetic energy equation (see e.g. Piomelli et al.
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1991):
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where the resolved kinetic energy field is defined as
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and S̃ij ≡ 1
2

(
∂ũi/∂xj + ∂ũj/∂xi

)
is the resolved strain-rate tensor. The first term on

the right-hand-side of (2) represents spatial transport, which vanishes on average for
homogeneous flows. The second is direct dissipation due to molecular viscosity. At
high Reynolds numbers, away from no-slip boundaries, this term is quite small. The

third term, τij S̃ij , is the so-called SGS dissipation rate, and typically has a negative
average value, representing a net drain of resolved kinetic energy into unresolved
motion. The last term represents energy injection (or extraction) by body forces. One
concludes that on average, in the inertial range, the SGS dissipation term represents
the most important effect of the unresolved scales on the evolution of kinetic energy
of the resolved field. Therefore, most attention will be devoted to this particular
statistic of the SGS stress.

1.2. Smagorinsky model

Since the inception of LES, the eddy-viscosity model first formulated by Smagorinsky
(1963) remains in wide use. The model for the deviatoric part of the stress is

τdij = −2 (CS∆)2
∣∣S̃ ∣∣S̃ij , (4)

where the modulus of the resolved strain rate is∣∣S̃ ∣∣ ≡ (2S̃mnS̃mn)
1/2. (5)

CS is a dimensionless coefficient. Given the dynamical importance of SGS energy
dissipation, a strategy to determine, or calibrate, CS from data is to require that the
Smagorinsky model reproduces the correct mean SGS dissipation. This leads to

C2
S = −

〈
τij S̃ij

〉〈
2∆2
∣∣S̃ ∣∣S̃mnS̃mn〉 . (6)

The averaging can be ensemble, time, or spatial, depending on specific flow conditions.
The coefficient determined by condition (6) (and similar ones for models discussed

later) can be interpreted as follows: using this value in LES is a necessary condition
to reproduce the correct SGS dissipation assuming that the simulation is producing

the correct value of the denominator 2
〈
∆2
∣∣S̃ ∣∣S̃mnS̃mn〉 (see §3.4 for a more detailed

discussion of this issue).
The Smagorinsky model implicitly assumes that the subgrid scales adjust instanta-

neously to changes in the resolved field. By construction, the model is dissipative, and
only allows for forward transfer of energy from the resolved scales to the unresolved
ones. Among others, Piomelli et al. (1991) and Liu et al. (1994) have found both of
these features to be unrealistic.

1.3. Similarity model

The similarity models form a different class of parameterization (Bardina et al. 1980;
Liu et al. 1994). They take advantage of the high correlation observed between the
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smallest resolved scales and the actual SGS scales, which leads to

τij = CLLij , (7)

where

Lij ≡ ũiũj − ũi ũj . (8)

The overline denotes a second filtering operation, typically at a scale 2∆. Originally
(Bardina et al. 1980) this was performed at the same level as the grid filter, ∆, but
it was later found to be more appropriate to filter at larger lengths (Liu et al. 1994).
By construction, this model assumes that the local stresses at different filter levels are
very similar, so a similarity coefficient CL ∼ O(1) is to be expected. As was done for

the Smagorinsky coefficient, one may contract the SGS stress and model with S̃ij to
form the SGS dissipation, and again solve for the coefficient according to

CL =

〈
τij S̃ij

〉〈
LmnS̃mn

〉 . (9)

In simulations, the model is typically supplemented with the Smagorinsky model
(mixed model) to ensure that mean dissipation of kinetic energy takes place in the
simulation (Zang, Street & Koseff 1993; Vreman, Guerts & Kuerten (1994); etc.). The
similarity term then accounts for more local features of the flow, such as backscatter
(Liu et al. 1994; Piomelli et al. 1996).

1.4. Dynamic Smagorinsky model

In the traditional Smagorinsky model, the coefficient CS needs to be prescribed a
priori. This is a serious drawback since different regions of the flow may require
different coefficient values. For instance, if one is modelling subgrid scales in the
presence of a turbulent/non-turbulent interface, which typically bounds shear flows,
one may need to reduce the coefficients in the outer, non-turbulent regions. Germano
et al. (1991) carried the idea of similarity between scales to the next logical step by
introducing the dynamic Smagorinsky model

τdij = −2 (CSD∆)2
∣∣S̃ ∣∣S̃ij , (10)

where the coefficient is obtained from

C2
SD =

〈
LijMij

〉∗〈
MmnMmn

〉∗ . (11)

Lij was defined in (8), and Mij is defined as

Mij = −2
(

(2∆)2
∣∣S̃ ∣∣S̃ ij − ∆2

∣∣S̃ ∣∣S̃ ij) . (12)

The averaging operation 〈 〉∗ is required to avoid very small denominators or neg-
ative numerator values in (11), which tend to produce numerical instabilities when
implemented without averaging. The averaging is performed over regions of statistical
homogeneity (Germano et al. 1991; Ghosal et al. 1995) or fluid pathlines (Meneveau,
Lund & Cabot 1996).

There are other variants of the eddy-viscosity and similarity models, but in order
to keep the discussion focused, this work will address the regular and dynamic
Smagorinsky and similarity models in the basic forms outlined above.
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1.5. Outline

Details of the experimental setup, instrumentation, measurements performed, and
basic flow characteristics are presented in § 2. Plane wakes are characterized by a
slow downstream development of mean quantities. While much is known about the
distributions of Reynolds-averaged Navier–Stokes (RANS) variables, very little is
known about the spatial distribution of mean LES variables in the plane wake.
Section 3 describes basic aspects of the data analysis procedures such as filtering, and
key assumptions used. Section 4 describes systematic profile measurements across the
wake, from x/D = 25 to x/D = 100, where D is the cylinder diameter. The focus
there is on documenting the spatial distribution of variables such as the time-averaged
SGS dissipation rate, model coefficients obtained according to (6) and (9), correlation
coefficients between real and modelled stress elements, effects of filter scale, etc.

As one spans different axial and transverse locations inside the wake, the mean
shear, fluctuating strain, and other quantities vary significantly. If one were to perform
LES using the traditional Smagorinsky or similarity model, a constant coefficient for
all locations in the field would be employed. Thus, a measure of how well or how
poorly such models capture the mean SGS dissipation is the degree of spatial variation
the coefficients (measured according to (6) and (9)) exhibit throughout the wake. If
there are variations, one is interested to find out whether the dynamic procedure
allows one to capture such variations.

Another interesting issue arises because the dynamic and similarity models involve
several different filter levels, and assume that the coefficient is the same at the different
filter levels. As one moves to the limits of the inertial range (say if ∆ → L, where
L is the integral scale), this assumption may begin to be questionable, and at lower
Reynolds numbers, where the inertial range disappears, this assumption may become
invalid. What are the implications of these possible limitations on the similarity
model, or on the dynamic model? This is a practically important question as LES is
often done with very coarse grids (VLES) so that the inertial range is not captured.
Section 4 also includes a study of the effects of Reynolds number.

To ascertain if transverse variations of the Smagorinsky coefficient are due to outer
intermittency, conditional averaging is performed in order to distinguish between
turbulent and non-turbulent regions (see §5).

Section 6 deals with conditional averaging in the context of large-scale coherent
structures, and will address the effects of these features on the SGS dynamics, on
the different models, and on how filter scale affects the results. Final conclusions are
outlined in §7.

2. Experiment description
2.1. Facility and instrumentation

Experiments were performed in the Corrsin Wind Tunnel (Comte-Bellot & Corrsin
1966). The tunnel has a 6×6 m primary inlet with a 25:1 contraction, which feeds into
the secondary inlet. Comte-Bellot & Corrsin added a secondary 1.27:1 contraction (to
improve isotropy of grid-generated turbulence) which in turn feeds into the 1.2×0.91 m
and 10 m long test section. It has the usual gradual increase in the spanwise width
along the test section to account for boundary layer growth. A D = 5.08 cm diameter
smooth cylinder was placed downstream of the secondary contraction. The cylinder
diameter was fairly large, with an aspect ratio of only 23 and a blockage of 5.6%,
which are not those of an ideal free cylinder wake. A large cylinder was nevertheless
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chosen because the emphasis of this study is to use as high a Reynolds number as
possible, in order to be able to span a significant range of filter scales in the analysis
of subgrid variables. Reproducing precise details of a free wake was not a major goal.

Hot-wire probes were mounted on a Y ,Z two-stage stepper motor driven traverse.
Translation in the X-direction is manual. Measurements were performed at x/D = 25,
50, 75 and 100. Only the vertical portion of the traverse is used in this experiment,
which covers 0.48 m of the 0.91 m test section height. This precludes reaching the
edges of the wake for the downstream measurement stations. For in situ calibration
of x-wire probes, a rotation stage was mounted at the end of the traverse arm 0.8 m
upstream of the traverse. The rotation stage was originally connected to a stepper
motor, but the vibrational loads of the steps imparted to the hot wire were too
large, and would invariably break the probe wires. A manual crankshaft using a
flexible drive shaft was used instead. An optical encoder with resolution of 0.005◦

was mounted on the rotation stage so that its angular position would be known.
An Auspex AHWU-100 subminiature single-wire probe was used for well-resolved

streamwise velocity (u1) measurements. An x-wire probe was used to resolve u1 and
u2 required to simultaneously capture the large-scale coherent structures. The x-wire
consists of two of the 12 sensors in a Auspex AVOP-12-100 probe. The original
goal had been to resolve the transverse gradients of filtered velocity fields using the
12-wire probe. However, for reasons to be explained later, for the study of subgrid
models only streamwise differentiation was ultimately employed since only streamwise
filtering is possible (with Taylor’s hypothesis). All three probes used 2.5 µm diameter,
platinum-plated tungsten wire. The x-wire probes had a length of 0.46 mm while the
single wire probe was 0.4 mm in length. The single and x-wire probes were separated
by 5 cm in the spanwise direction. The single-wire probe was operated with a DISA
56CT01 constant-temperature anemometer at an overheat ratio of 1.8. The x-wire
probes were operated by an A.A. Lab AN-1003 constant-temperature anemometer,
at a lower overheat ratio of 1.6 to diminish cross-talk.

For the data set at x/D = 25, the calibration was performed at 13 free-stream
velocities and nine angles. Using a similar approach as Oster & Wygnanski (1982),
the 117 data points were used to least-squares fit a 15-coefficient polynomial, with
dependencies on the velocities u1 and u2, and the two voltages from the x-wires, E1, and
E2. Calibration data for the single wire were simultaneously taken while the x-wires
were at zero degrees. For x/D = 25, this calibration involved seven velocities, whereas
at the other measurement stations, only five velocities were used. The polynomial
used for the single wire is a modified King’s law of the form u1 = (D1E

2 +D2E+D3)
2.

The duration of calibration and data acquisition had to be kept to a minimum
because of voltage drift due to probe fouling. Owing to the large thermal mass of the
wind tunnel, the short duration prevented keeping its temperature at a constant value
during calibration. To correct the voltage readings for temperature changes (which
were below 5 ◦C), a thermocouple was used to record temperature. An additional
calibration was performed for temperature dependence, which was repeatably linear
and very reliable. For additional details on the experimental setup, calibration, etc.
see O’Neil (1996).

After the calibration, the cylinder was placed in the tunnel, and the data were
acquired. Sampling rate was 60 kHz, and low-pass filering was performed at 30 kHz.
Table 1 contains key parameters of the data sets at each x/D. After the turbulence
data were recorded, and the cylinder removed, a second calibration was performed.
This was used as a consistency check on the quality of the data. Of all tests reported
here, there was no discernible difference in centreline dissipation εCL, velocity r.m.s.
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Two-dimensional
cylinder wake x/D = 25 x/D = 50 x/D = 75 x/D = 100

Re′D = UCLD/ν 7.3× 104 7.7× 104 8.9× 104 8.8× 104

Us (m s−1) 3.23
u′CL (m s−1) 2.69 1.71 1.50 1.33
εCL (m2 s−3) 175 37.4 19.3 9.84
Rλ 556 491 516 573
η (mm) 0.065 0.096 0.112 0.133
λ (mm) 3.01 4.17 4.74 6.28
L1 (m) 0.156 0.140 0.171 0.191
` (cm) 7.44 11.4∗ 14.2∗ 16.5∗

Skewness −0.53 −0.51 −0.46 −0.39

Table 1. Fundamental quantities of cylinder wake profile data. Values with an asterisk are based
on estimated values of U∞ (see text). For all cases, the sampling rate was 60 kHz, the low-pass filter
was 30 kHz for the single-wire and 29.7 kHz for the x-wire probe. There were 2 × 106 points for
each probe. All turbulence scales are computed at centreline.

u′rms, or derivative skewness (to within ±0.25%). Like most variables of interest in
the present study, these quantities depend on changes or derivatives of velocity in the
streamwise (temporal) direction, and are thus less sensitive to errors from drift and
calibration.

2.2. Data

The wake profile was sampled at 15 discrete y-positions, from the centreline to the
edge of the wake; 2 × 106 data points were recorded for each of the 15 positions.
Four wake profiles were sampled, at x/D = 25, 50, 75, and 100. As mentioned
before, since the primary interest was to study the subgrid stress and models at
high Reynolds numbers, instead of holding U∞ constant, the largest turbulence
Reynolds number was selected at each x/D. Owing to the constraints of the in
situ calibration, the tunnel speed (measured with a Pitot probe at low x/D but far
outside the wake) for measurements at different x/D was set to different values: it
was set to the tunnel maximum speed without the cylinder (∼ 33 m s−1) minus 3u′CL,
where u′CL is the velocity root-mean-square at the wake centreline of the cylinder.
At x/D = 100, it was observed in earlier measurements that the edge of the wake
came close to the tunnel boundary layers. Thus, the wake properties are expected
to deviate from those of a free wake. Since the primary purpose of this data is to
study the behaviour of the subgrid stress (SGS) at high Reynolds numbers, and not
canonical self-preserving behaviour, this limitation was not considered to be a serious
drawback.

Since at the larger downstream distances U∞ was not measured, the precise defect
velocity Us could not be obtained except at x/D = 25 (see table 1). Therefore, r.m.s.
data will be normalized with the centreline mean velocity UCL instead of defect
velocity. A crude estimate of U∞ was nevertheless obtained by an extrapolation,
which was based on a calibration with compressor speed. This estimate was used
solely for purposes of estimating the half-width of the wake `. Table 1 contains the
characteristics of each data set.

Additional data were taken at the centreline of the cylinder wake at x/D = 100,
with the goal of varying the turbulence Reynolds number. For the lowest Reynolds
number, a 6.35 mm diameter cylinder was used instead of the 5.08 cm diameter one
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Re′D = (UCLD) /ν = 6.2× 103 1.8× 104 4.1× 104 8.7× 104

D (mm) 6.35 50.8 50.8 50.8
UCL (m s−1) 14.3 5.30 11.8 25.2
u′CL (m s−1) 0.57 0.24 0.56 1.17
εCL (m2 s−3) 13.7 0.094 0.712 8.00
Rλ 89.3 184 377 490
η (mm) 0.123 0.427 0.257 0.140
λ (mm) 2.28 11.4 8.77 5.15
L1 (m) 0.031 0.109 0.173 0.208
Skewness −0.37 −0.47 −0.48 −0.38
Sampling rate (kHz) 60 6 20 60
Low-pass filter (kHz) 30 3 10 30

Table 2. Fundamental quantities for the wake at x/D = 100, on the centreline,
for varying Reynolds number.

ReM = MU/ν = 4.4× 104 8.9× 104

Mesh spacing M (cm) 5.08 10.2
x/M 138 69
U (m s−1) 12.7 12.8
u′ (m s−1) 0.13 0.22
ε (m2 s−3) 0.039 0.153
Rλ 85.6 120
η (mm) 0.532 0.377
λ (mm) 9.68 8.13
L1 (m) 0.083 0.069
Skewness −0.43 −0.37
Sampling rate (kHz) 10 20
Low-pass filter (kHz) 3 10
Data points/wire (×106) 2 2

Table 3. Fundamental quantities of the grid turbulence data.

(see table 2). Grid turbulence at two different Reynolds numbers was also briefly
studied. The grids were installed upstream of the secondary contraction. The first
grid studied used a 5.08 cm wide mesh, constructed of 0.95 cm thick square bars. The
next set used a 10.2 cm wide mesh grid, with 1.91 cm thick square bars. The data
characteristics are summarized in table 3.

Throughout this work, Taylor’s hypothesis is used to interpret temporal signals as
one-dimensional spatial cuts across a three-dimensional turbulent velocity field. The
turbulence intensity for the data sets at x/D = 50, 75 and 100 was well below 10%,
and was 13% for the set at x/D = 25. Such levels are believed to be sufficiently low
for Taylor’s hypothesis to be acceptably accurate, 13% being borderline.

2.3. Velocity field characteristics

Before the subgrid stress and models are studied in the next sections, some character-
istics of the turbulent velocity field are documented. Figure 1 shows the streamwise
and vertical r.m.s. velocities, and the Reynolds stress profiles, normalized with the
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Figure 1. Velocity root-mean-square profiles of streamwise u1 (a) transverse velocity u2 (b), and
Reynolds shear stress (c), at x/D = 25 (circles), x/D = 50 (squares), x/D = 75 (triangles), and
x/D = 100 (diamonds). Values are normalized with the centreline velocity.
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Figure 2. (a) The longitudinal autocorrelation function of u1 from the x/D = 25 x-wire (solid line)
and single-wire (dotted line) data at the centreline (using Taylor’s hypothesis). (b) The autocorrelation
function of u2, at x/D = 25 from the x-wire data. Without using Taylor’s hypothesis, the lag between
the zero crossings gives the Strouhal frequency. R22(r) at larger x/D are much more similar to (a).

centreline mean velocity since the defect velocity is not accurately known. The trans-
verse height is normalized with the half-velocity-defect point, `. At x/D = 75 and
100, the rms levels exceed those expected for a fully free wake, probably due to the
containing wall effects.

Evaluation of the longitudinal integral scale is based on correlation functions.
A typical spatial autocorrelation function of streamwise velocity u1 is shown in
figure 2(a), which has been obtained using Taylor’s hypothesis at the centreline at
x/D = 25. Results from both the single and x-wire signals are shown, and agree quite
well. The integral scale, L1, is calculated by numerically integrating R11(r). The u2

autocorrelation is shown in figure 2(b). It displays marked periodicity, arising from
the vortex shedding which is still very pronounced at x/D = 25, even at this high
Reynolds number. This phenomenon will be discussed in more detail in § 6. R22(r) at
x/D > 50 no longer shows the sinusoidal behaviour.

Next, viscous-range variables such as molecular dissipation ε are evaluated. How-
ever, because of the high Reynolds numbers there is a concern about whether ε
could be fully resolved even with the single-wire probe, especially at x/D = 25 where
the Kolmogorov length is expected to be smallest. A commonly used alternative to
measure ε is to use the third-order structure function method valid for locally isotropic
turbulence (Monin & Yaglom 1971). When the displacement r falls inside the inertial
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Figure 3. Compensated third-order structure functions used to determine ε at the wake centreline
(in m2 s−3). The data are from the single-wire data at x/D = 25 (solid line), x/D = 50 (dotted line),
x/D = 75 (dashed line) and x/D = 100 (dot-dashes).

range, this allows the dissipation to be obtained according to

ε = −
〈

(u1 (x+ r)− u1 (x))3
〉

4
5
r

. (13)

Data from the single wire at the centreline of the four profiles are shown in figure 3.
The plateau regions in this figure give the approximate values of εCL. For instance,
for x/D = 25, we obtain εCL ' 175 m2 s−3. The other curves also have plateaus inside
their inertial ranges, and the respective values of εCL are listed in table 1. They differed
from 15ν

〈
(du1/dx)2

〉
, obtained from directly differentiating the signal, by up to about

25% due to above-mentioned lack of resolution at viscous scales and possibly also
due to a lack of complete local isotropy.

For reference only, the skewness of the stremwise velocity gradient at the
centreline is computed and shown in table 1. These values may also be affected
by probe under-resolution of the viscous range. The Taylor microscale and Kol-
mogorov scale are computed using the estimates of the dissipation, and are shown in
table 1.

Figures 4(a) and (b) show the u1 spectrum at x/D = 25 and x/D = 100, respectively.
The data are from the single-wire probe. There are several electronic noise spikes at
the higher frequencies (caused by the stepper motor driver of the traverse). While
the noise spikes have a localized high intensity, they are very narrow and thus their
contribution to the variables of interest in this study are negligible, as we have
verified. Therefore no effort will be made to remove the noise by additional filtering.
The inertial range appears to cover over one decade in length. A 0.55(k1η)−5/3

line is superimposed (with a one-dimensional Kolmogorov constant of 0.55) giving
Ck = (55/18)(0.55) ≈ 1.7, quite close to the standard value (Monin & Yaglom 1971;
Saddoughi & Veeravalli 1994). The u1 spectra for the cylinder wake at x/D = 100
for the five different Reynolds numbers studied, and the data from the grid, are quite
similar to figure 4 but, as expected, they fan out differently at low k1, depending on
Rλ.
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Figure 4. Longitudinal spectrum of u1 at the wake centreline, in Kolmogorov units. Data are from
the single-wire probe. A −5/3 slope dashed line is superimposed on the inertial range, and gives a
one-dimensional Kolmogorov constant of 0.55. (a) x/D = 25, (b) x/D = 100.

3. Data analysis and interpretation
The data are analysed by filtering in time, which is interpreted as one-dimensional

spatial filtering in the streamwise direction by means of Taylor’s frozen flow hypoth-
esis. The filters employed are described in §3.1. In addition to Taylor’s hypothesis (a),
we make two additional key working hypotheses: (b) that the subgrid-scale statistics
are approximately isotropic, and (c) that one-dimensional filtering (as opposed to
three-dimensional spatial filtering) introduces effects that can be accounted for, or
that they do not qualitatively change the results. These issues are elaborated in §§3.2
and 3.3

3.1. Filtering

The analysis of hot-wire data is based upon one-dimensional filtering in the streamwise
direction, using Taylor’s hypothesis. The resolved velocity ũ1(x) at a scale ∆ is
computed according to

ũ1 (x) =

∫
u1

(
x′
)
G∆
(
x− x′

)
dx′. (14)

The 1-1 component of the SGS stress tensor is computed according to

τ11(x) =

∫
u1

(
x′
)
u1

(
x′
)
G∆
(
x− x′

)
dx′ − ũ1 (x) ũ1 (x) . (15)
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For computational convenience, all filtering is done in wave space using the fast
Fourier transform (Press et al. 1992). Data segments typically consist of 212 points
(which is on the order of 10 integral scales). Each segment had its local DC component
removed before filtering, and then added back after the filtering operation is complete.
Some variables, such as those that enter the dynamic model, involve several successive
filtering operations. For the first level of filtering, the overlap-and-save technique (Press
et al. 1992) is used. For studies that require filtering operations to be performed a
second time, periodicity of the data segment is enforced by fully padding the signal
with a mirror image of itself (in order to create a periodic signal which is continuous
at the edges) before convolving it with the response function. This was found to
minimize end effects.

Next, the filters used in this study are described. Most previous a priori studies
were based on one or more out of three filter types: Gaussian filter, spectral cut-off
filter and top-hat (or spatial) box filter (Piomelli et al. 1991; Leslie & Quarini 1979).
Below, their definitions in one-dimensional are given in wave space.

The cutoff filter eliminates all Fourier modes with wavenumbers above the cutoff
wavenumber,

G∆ (k1) =

{
1 if k1 6 π/∆
0 otherwise.

(16)

It has compact support in wave space, but has a sinc shape
(
sin
(
πx/∆

)
/
(
πx/∆

))
and decays very slowly (as 1/x) in physical space. It has the conceptual advantage
of separating clearly small- and large-wavenumber modes. It has the disadvantage of
introducing ‘ringing’ effects (or Gibbs phenomenon) in physical space when filtering
spatially localized phenomena.

The top-hat filter averages the signal in a box of size ∆, and in wave space it
becomes

G∆ (k1) =
sin
(

1
2
k1∆
)(

1
2
k1∆
) . (17)

Its advantage is a straightforward interpretation in physical space, but in Fourier-
space it has a long modulated tail (decaying as 1/k). This means that ‘large’ scales
also include significant amounts of ‘small’ scales, and vice versa.

The Gaussian filter is the only filter that has the same shape in physical and wave
space, and is defined as

G∆ (k1) = exp

(
−k

2
1∆

2

24

)
. (18)

Because it displays a good compromise between spatial and spectral localization, the
Gaussian filter will be used in most of this study, unless otherwise noted. Previous
investigations (e.g. Meneveau 1994) have found that the impact of using different filter
types on the SGS stress, SGS dissipation, model coefficients, etc., is quite small. (The
only noticeable exception where filter type has a strong effect is in the correlation
coefficient between real stress and the similarity model prediction, where the cutoff
filter yields zero correlation while the other filters give a strong correlation (Liu et al.
1994). We shall return to this issue in § 6.)

3.2. Assumption of subgrid isotropy

As outlined in §1, the variable of most interest in this work is the distribution of SGS

energy dissipation −
〈
τij S̃ij

〉
throughout the wake. From the single-wire measurements,

only the 1-1 term (out of a total of six) is available. In analogy with how the viscous
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dissipation is estimated from ∂u1/∂x1 by assuming small-scale isotropy (see e.g Monin
& Yaglom 1971), the SGS dissipation may be estimated by assuming the subgrid
scales to be isotropic. We assume that any tensor quantity representing averages of
subgrid variables is an isotropic tensor, such as the fourth-rank tensor

〈
τij S̃pq

〉
. Its

isotropic form is Qijpq =
〈
τij S̃pq

〉
= Aδijδpq + Bδipδjq + Cδiqδjp. Using the symmetries

Qijpq = Qjipq , Qijpq = Qijqp, and the divergence-free condition Qijpp = 0, the number of
unknown coefficients is reduced from three to one. One obtains

Qijpq = A
[
δijδpq − 3

2
(δipδjq + δiqδjp)

]
. (19)

The term that we measure is Q1111, and from the above A = − 1
2
Q1111. Thus the

total dissipation is

Qijij = − 1
2
Q1111

[
δijδij − 3

2
(δiiδjj + δijδji)

]
, (20)

or 〈
τij S̃ij

〉
= 15

2

〈
τ11S̃11

〉
. (21)

This shows that under the assumption that SGS motion is isotropic, it is possible to

employ the 1-1 component of the tensors only. The term − 15
2

〈
τ11S̃11

〉
, will be called

the ‘surrogate’ SGS energy dissipation. When studying the various models, the same
assumption of SGS isotropy will be used.

It is important to stress that the assumption of SGS isotropy may not strictly hold
throughout the wake, especially for large filtering scales. Consequently, it will not
be possible to interpret spatial variations in surrogate dissipation unequivocally as
changes in actual SGS dissipation. Variations in − 15

2
〈τ11S̃11〉 could also be caused by

changes in SGS anisotropy levels.

3.3. Effects of filter anisotropy

As mentioned before, the use of hot wires raises a primary limitation of the
experiment, which is that the data can only be filtered in the streamwise direc-
tion. Such one-dimensional filtering is substantially different in principle from the
usual three-dimensional filtering involved in LES, where all three directions are fil-
tered and coarse grained. Murray, Piomelli & Wallace (1996) have shown using a
priori tests of DNS in channel flow that considerable discrepancies between three- and
one-dimensional (or temporally filtered) variables arise at y+ 6 50, where turbulence
structure is strongly anisotropic. For y+ > 50 the discrepancies were acceptably small.

For isotropic turbulence, Meneveau (1994) has shown that the Smagorinsky co-
efficient obtained from the 1-1 component using one-dimensional filtering can be
simply related to that of three-dimensional filtering using the complete tensor con-
traction to define the SGS energy dissipation. If C1D

S is the coefficient obtained from
one-dimensional filtering and C3D

S is the traditional value, the relationship is

C3D
S ≈ 1.96C1D

S , (22)

independent of filter size, for ∆ in the inertial range. The relationship between the

coefficients is independent of ∆ because only the 1-1 component of S̃ij is used, that is, it
only involves derivatives in the filtered streamwise direction. Otherwise, if for instance
one were to use one-dimensional filtering in the x-direction, but take derivatives in

the (unfiltered) y-direction (e.g. to evaluate S̃12 using two x-wires displaced along the
y-direction), the relationship between C1D

S and C3D
S becomes more complicated and

dependent upon ∆ (see the analysis by Scotti, Meneveau & Lilly (1993)).
Besides inherent difficulties associated with instrumentation, this is the reason for
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not attempting to use derivatives across sensors in the y-direction to (e.g.) construct

S̃12. Since one can only filter in the x-direction, the analysis is limited to taking
derivatives in the same x-direction. This leaves the 1-1 components of the tensors
to be analysed for purposes of studying the SGS dynamics. When obtaining model
coefficients from balancing the rate of SGS dissipation, numerical discrepancies with
results from three-dimensional filtering are expected. For the Smagorinsky model,
a factor of roughly two is expected (see (22)). For the similarity model, since the

filter anisotropy is expected to affect
〈
L11S̃11

〉
in a similar fashion as

〈
τ11S̃11

〉
, the

discrepancy may be smaller. Overall, the general trends are expected to be robust (e.g.
dependence on scale, main features of spatial distributions, etc.).

3.4. Interpretation of a-priori tests

In a priori tests the model expressions are evaluated based on ‘true’ velocity fields.
However, during a simulation the model may affect the velocity field and give
rise to another flow configuration with different statistics. This raises difficulties in
interpreting the results of a priori tests.

In this study, comparisons between real (surrogate) dissipation and modelled dis-
sipation are made, for which the issue can be stated clearly. Consider, for instance,
the Smagorinsky model. In order to predict the correct mean dissipation (which is a
necessary condition to reproduce the mean resolved kinetic energy), the expression
C2
S2∆2

〈
|S̃ |S̃2

ij

〉
must be ‘correct’, i.e. it must equal the real dissipation

〈
τij S̃ij

〉
. Then

the coefficient determined in an a priori test is obtained according to (6). In such a
test, the ‘correct’

〈
|S̃ |S̃2

ij

〉
value is measured from a physically realistic velocity field.

A simulation using a different coefficient could still (possibly, but not necessarily)
reproduce the correct dissipation by ‘adjusting’ the value of

〈
|S̃ |S̃2

ij

〉
. For instance, if

one uses too low a value for CS , there may be a ‘pile-up’ of energy near the cutoff
scale, and

〈
|S̃ |S̃2

ij

〉
would increase above its ‘true’ value to attempt to make up for the

lower coefficient, and vice versa. However, if this is the case, one already knows that
the simulation is doing something wrong to make up for the wrong coefficient.

It may be that the large-scale kinetic energy is still approximately realistic, but
a particular statistic of the LES field, typically at small resolved scales, will be un-
physical. Depending on applications this may be acceptable, but from a fundamental
viewpoint, there is a problem. Thus, the condition that C2

S2∆2
〈
|S̃ |S̃2

ij

〉
be equal to the

real dissipation in an a priori test is a necessary condition for LES to correctly repro-
duce the resolved kinetic energy and particular small-scale features of the resolved
field (Meneveau 1994). It is from this perspective that the results from the a priori
tests described in this paper will be interpreted.

4. Mean SGS dissipation and model predictions
4.1. Real SGS dissipation profiles

The spatial distribution of the surrogate SGS energy dissipation is computed based
on the data according to (21). The results are shown in figure 5(a–c) for ∆/η = 100,
∆/η = 50, and ∆/η = 20.

The results are normalized with the viscous dissipation at the centreline (see table
1). The profiles for different downstream locations are seen to agree very well in the
inner portion of the wake. The similarity disappears in the outer region, where the
dissipation of the near-cylinder stations is seen to decay more slowly away from the
centreline. However, not much significance should be attached to this discrepancy
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Figure 5. Profiles of surrogate SGS dissipation across the wake, at various filter scales. Different
symbols correspond to the different downstream locations: x/D = 25 (circles), x/D = 50 (squares),
x/D = 75 (triangles), x/D = 100 (diamonds). (a) ∆/η = 100, (b) ∆/η = 50, and (c) ∆/η = 20.
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Figure 6. Surrogate SGS dissipation profiles across the wake at x/D = 100, for different filter
lengths: diamonds (∆/η = 20), triangles (∆/η = 50), squares (∆/η = 100), circles (∆/η = 150), stars
(∆/η = 200), plus (∆/η = 500) and crosses (∆/η = 1000).

since at the larger x/D, ` is estimated rather than directly measured which may affect
the scaled results.

In the inertial range, the SGS dissipation is expected to remain independent of
filter length, and equal to the molecular dissipation. At ∆ = 100η, the measured SGS
dissipation captures most of εCL, an indication that at this scale the dynamics are
purely inertial. At smaller filter lengths, the observed decrease in SGS dissipation
implies that more of the resolved energy is able to be dissipated directly by molecular
viscosity.

Next, the dependency of the measured SGS dissipation on filter length, ∆, is
examined in more detail for a single downstream distance x/D = 100. In figure 6, ∆
is varied between 20η and 1000η. As before, the results show that for filter length ∆
below 50η more energy is being dissipated directly by viscosity instead of through
the SGS scales. Filter levels from ∆ = 150η to ∆ = 1000η show the opposite trend, in
that the SGS dissipation decreases with increasing filter length. At the larger scales,
the assumption of isotropy of the subgrid scales can no longer hold. There, the 1-1
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Figure 7. Profiles of surrogate SGS dissipation as predicted by the Smagorinsky model form,
without multiplying by the Smagorinsky coefficient. Symbols as in figure 5. (a) ∆/η = 100, (b)
∆/η = 50, and (c) ∆/η = 20.

0.08

0 0.5 1.0 1.5 2.0 2.5

(a)

y/F

0.06

0.04

0.02

CS

0.08

0 0.5 1.0 1.5 2.0 2.5

(b)

y/F

0.06

0.04

0.02

0.08

0 0.5 1.0 1.5 2.0 2.5

(c)

y/F

0.06

0.04

0.02

Figure 8. Profiles of measured (surrogate) Smagorinsky coefficient across the wake, at various
filter scales (symbols as in figure 5). (a) ∆/η = 100, (b) ∆/η = 50, and (c) ∆/η = 20.

component of the strain rate tends to a very small value (in this flow), while the
1-2 component tends (approximately) to the mean of ∂u1/∂y. It is this term which is
responsible for kinetic energy production in the RANS sense. Thus, in the wake the
surrogate (1-1) SGS dissipation term does not approach the energy injection rate at
large scales, owing to lack of isotropy.

However, the profiles remain quite close in the range of ∆ between 50η and 200η.
This is indicative of inertial-range behaviour at those scales, and this appears to hold
throughout the wake profile. A similar comparison has been performed at different
x/D, and the basic trends are found to be unaffected by changes in x/D.

4.2. Smagorinsky model

Next, the SGS dissipation provided by the Smagorinsky model is evaluated. By con-
tracting (4) with the resolved strain rate tensor, using the SGS isotropy approximation
in (21), and a similar approximation for the strain-rate magnitude for the (smallest)
resolved scales, the surrogate Smagorinsky model for the average SGS dissipation
becomes

(15)3/2 (∆CS )2
〈∣∣S̃3

11

∣∣〉. (23)

The expression (15)3/2 ∆2
〈∣∣S̃3

11

∣∣〉, without the coefficient C2
S (which will be studied

later), is normalized with εCL and shown in figure 7(a–c) for the same three filtering

lengths as before. These profiles do not seem to collapse quite as well as − 15
2

〈
τ11S̃11

〉
did in figures 5(a–c), but they follow the same general trends.

The previous measured results may now be substituted into (23), in order to solve



270 J. O’Neil and C. Meneveau

for a measured Smagorinsky coefficient

CS =

(
−
〈
τ11S̃11

〉
2
√

15∆̃2
〈∣∣S̃3

11

∣∣〉
)1/2

. (24)

The results are shown in figure 8(a–c) for filter sizes of 100η, 50η and 20η, respectively.
One measure of a model’s universal applicability is how much or how little the
coefficient varies throughout different flow regions and regimes. There are some
variations, but in the inner region of the wake, the coefficient is relatively constant.
Unlike grid turbulence, the wake contains regions of large mean shear near y ∼ `,
especially at x/D = 25, and regions of high intermittency in its outer portion. And
yet, the observed variations in CS are weak.

The value obtained at the centreline, CS ∼ 0.05–0.06 is quite comparable to the
value obtained by Meneveau (1994) for grid turbulence. As mentioned in §3.3, one
can relate this value to the coefficient that arises from three-dimensional (instead of
one-dimensional) filtering, according to C3D

S ≈ 1.96C1D
S , where C1D

S is the measured
value (from (24)). This gives C3D

S ∼ 0.1–0.12, in reasonable agreement with commonly
used values in simulations of shear flows (Rogallo & Moin 1984).

Focusing on more detailed features of the results, a mild decreasing trend from
the centreline towards the outer edge of the wake can be observed. For ∆ = 100η,
the coefficient ranges from 0.056 at the centreline to ∼ 0.04 at the outer edge. The
variation is smaller for the smaller filter scale ∆ = 20η (figure 8c), a trend that is in
agreement with the expectation that small scales are more universal than large scales.
Nevertheless, the spectra show that even ∆ = 100η (kη = πη/∆ ∼ 3.1× 10−2) is well
inside the inertial range (see figure 4). One would therefore expect that the coefficient
should be constant there as well. The observed decreasing trend at ∆ = 100η means
that in the outer regions there is less turbulent energy being cascaded (for a given
amount of fluctuating straining motion), than at the centreline. A possible cause for
such an effect is outer intermittency, which will be examined in §5.

The agreement between instantaneous values of the measured (1-1) SGS stress and
the model is quantified using the correlation coefficient between real and modelled
(1-1) component of the stress. The resulting profiles of correlation (not shown) also
overlap for different x/D, with peak values of about ρ ∼ 0.3 near the centreline,
and decaying to ρ ∼ 0.1 near the outer edge of the wake. The correlation coefficient
between the measured SGS dissipation and the Smagorinsky model dissipation is also
evaluated. Consistent with previous analyses based on DNS (Clark et al. 1979), the
correlation at the dissipation (scalar) level is larger (near 0.3–0.4) than at the tensor
element level.

4.3. Similarity model

The similarity model was defined in (7), and is based on the resolved stress Lij . The
modelled SGS dissipation accomplished by this model form (without the coefficient
cL) is evaluated from the data by invoking the same isotropy assumptions as before,

i.e. we measure − 15
2

〈
L11S̃11

〉
. The results are normalized with εCL and are shown

in figure 9. Around the centreline, the profiles collapse less well than those of the
real dissipation in figure 5, but better than those of the Smagorinsky model in
figure 7.

Using (9), the isotropy assumption, and the data in figures 5 and 9, the similarity
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Figure 9. Profiles of surrogate SGS dissipation as predicted by the similarity model form, without
multiplying by the coefficient CL. Symbols as in figure 5. (a) ∆/η = 100, (b) ∆/η = 50, and (c)
∆/η = 20.
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Figure 10. Profiles of measured (surrogate) similarity coefficient across the wake, at various filter
scales (symbols as in figure 5). (a) ∆/η = 100, (b) ∆/η = 50, and (c) ∆/η = 20.

coefficient is evaluated according to

CL =

〈
τ11S̃11

〉〈
L11S̃11

〉 . (25)

The results are shown in figure 10. As with the Smagorinsky model, a figure of merit
of the similarity model is how constant (universal) the coefficient is. At ∆ = 100η in
figure 10(a), the variations of CL are of similar magnitude as those of CS in figure
8(a), but in the opposite direction, slightly increasing at the wake’s outer edge. As can
be seen, changes in ∆ have considerable impact. For the three filter lengths shown,
the change in CL is ∼ ±25%, while for CS it was only ∼ ±5%. The similarity model,
which is based on two filter scales, appears to be more sensitive to scale than the
Smagorinsky model. If one of both scales ∆ and 2∆ approaches the limits of the
inertial range, the coefficient changes.

The value of CL ≈ 1 is larger that the value CL ∼ 0.45 quoted in Liu et al. (1994)
for data in the round jet. The reason is that there the similarity model was clipped to
eliminate backscatter (it has now become clear that the addition of an eddy-viscosity
term, the mixed model, is a better way of eliminating numerical difficulties associated
with backscatter). In Liu, Meneveau & Katz (1995), a coefficient of CL ∼ 1 (i.e. close
to present values) was obtained from the jet data, when no clipping is performed.
CL ≈ 1 is also consistent with a recent analysis by Cook (1997).

The correlation coefficient between τ11 and L11 was calculated and was signifi-
cantly higher (about ρ ∼ 0.75) than for the Smagorinsky model. This is consistent
with the findings of previous investigators (Bardina et al. 1980; Liu et al. 1994).
The correlations observed for the similarity model are higher by about 0.15 than
those reported in Liu et al. (1994). The latter results were based on coarse-grained
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Figure 11. Profiles of measured (surrogate) dynamic Smagorinsky coefficient across the wake
(symbols as in figure 5). (a) ∆/η = 100, (b) ∆/η = 50, and (c) ∆/η = 20.

data, where Lij was computed from the resolved velocity ũ, which (in addition to
being filtered) had been sampled on a discrete mesh of size ∆. The aim of that
approach was to make the comparison based on correlation coefficients more com-
patible with the coarse-grained information that is available from LES on a discrete
mesh. This approach is not followed here, since the focus of the present work is
not on correlation coefficients, but on physical field variables such as the SGS dis-
sipation rate (which is usually defined without additional coarse sampling). Finally
(as has been observed by others, see e.g. Liu et al.), when using the spectral cut-
off filter, essentially zero correlation is obtained between τ11 and L11. This may
be due to the properties of the cutoff filter: when filtering a spatially localized
structure, ‘ringing’ or additional oscillations are generated throughout the domain
(Gibbs phenomenon) which causes the correlation among physical-space fields to
drop. Additional features of the similarity model with cutoff filtering are studied in
§ 6.

4.4. Dynamic model

The dynamic model was reviewed in §1. To obtain the dynamic Smagorinsky coefficient
from the resolved scales of the experimental data, the assumption of isotropy is
again invoked. The ‘surrogate’ of the dynamic coefficient is thus computed according
to

C2
SD =

〈
L11M

∗
11

〉〈
M∗

11M
∗
11

〉 , (26)

where

M∗
11 = −2

√
15
(

(2∆)2
∣∣S̃11

∣∣S̃11 − ∆2
∣∣S̃11

∣∣S̃11

)
. (27)

Results are shown in figure 11. The dynamic coefficient is about ∼ 25% higher than
CS in figure 8, but follows similar trends. Here, of course, the coefficient CSD is
allowed to vary dynamically, so the variation across the profile or with a change in ∆
is not a problem per se. It is encouraging that the coefficient displays a similar decay
toward the outermost part of the wake as the real coefficient CS , although the trend
is slightly more pronounced. While CS is based on third-order moments, CSD is based
on fourth-order moments, with statistical convergence less satisfactory as evidenced
by the increased scatter. Given the many approximations used in measuring CSD , the
observed 25% difference in magnitude with CS cannot be attributed much significance
at this stage.
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Figure 12. (a) Surrogate Smagorinsky coefficient, (b) surrogate similarity coefficient and (c) surrogate
dynamic Smagorinsky coefficient as a function of Rλ, at the wake centreline (circles: ∆/η = 100,
and diamonds: ∆/η = 20) at x/D = 100; and in grid turbulence (squares: ∆/η = 100 and triangles:
∆/η = 20).

4.5. Reynolds number dependence

In this section the effect of Reynolds number on model coefficients is documented.
Data from the grid and cylinder at the centreline, described in tables 3 and 2, are
analysed with ∆ = 20η and 100η (Gaussian filter). The Smagorinsky coefficient is
shown in figure 12(a), and for both flows shows essentially no sensitivity to Rλ, and
only a weak dependence on scale. The similarity coefficient in 12(b) shows little
dependence on Rλ at ∆/η = 20, but for ∆ = 100η it varies considerably. It should be
noted that the filter is held constant, and especially for the lower values of Rλ = 86,
2∆ = 200η is already larger or comparable to the integral scale.

In regard to the dynamic Smagorinsky model, CSD in figure 12(c) shows similar
behaviour to CS for Rλ > 184, but shows a decrease at lower Reynolds numbers
for the larger filter size ∆/η = 100. Like CL, CSD is based on a test-filter scale of
2∆ = 200η which already falls outside the expected scaling range. Yet CSD appears to
be less variable at lower Reynolds numbers than CL.

The results confirm that as long as all relevant filter scales are well inside the
inertial range, there is no appreciable Reynolds number effect on coefficients. The
similarity model appears to be more sensitive to approaching the scaling limits than
the Smagorinsky model.
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5. Effects of outer intermittency on the Smagorinsky coefficient
The decay of CS across the profile, observed in §4.2 for a significant part of

the inertial range, means that the Smagorinsky model with a uniform coefficient
appropriate to the wake centreline provides excessive damping near the wake’s edges.
This situation is reminiscent of the excessive mixing provided by the classical mixing
length closure in the RANS approach (Tennekes & Lumley 1972). In the outer parts
of the wake, it has been argued (Tennekes & Lumley 1972) that outer intermittency
(Corrsin 1943, 1955; Townsend 1956) may decrease the effective turbulent mixing,
due to the presence of significant portions of irrotational flow.

A similar effect may be at play for SGS motions: the real SGS dissipation is
associated with true turbulent motion and should, arguably, be small in the irrotational
portions of the flow. On the other hand, the mean dissipation from the Smagorinsky
model may contain contributions from irrotational strains, and may thus overestimate
SGS dissipation. In order to ascertain if this is the reason for the slight decreasing
trend observed previously in CS (see figure 8), an attempt is made to discriminate
among turbulent and non-turbulent events using conditional averaging. At issue is
whether CS computed only within the turbulent regions (i.e. eliminating the effect of
irrotational flow) varies less than the global value.

To this end, an indicator function I(x) with the property that I(x) = 1 if x ∈
turbulent region and I(x) = 0 if x ∈ non-turbulent region is constructed. With I(x),
one may define an intermittency function Γ according to

Γ = 〈I〉 = lim
L0→∞

1

L0

∫ L0

0

I(x) dx. (28)

If the flow is completely turbulent, Γ = 1, while if it is always non-turbulent,
Γ = 0. The subscripts T and N will be used to denote turbulent and non-turbulent
conditional averages, respectively. The first conditional moments of any arbitrary
variable Q then become

〈Q〉T = 〈Q(x) |I(x) = 1〉 = lim
L0→∞

1

ΓL0

∫ L0

0

Q(x)I(x) dx, (29)

and

〈Q〉N = 〈Q(x) |I(x) = 0〉 = lim
L0→∞

1

(1− Γ )L0

∫ L0

0

Q(x) (1− I(x)) dx. (30)

The first unconditional moment is

〈Q〉 = Γ 〈Q〉T + (1− Γ ) 〈Q〉N. (31)

We will measure the conditional real and modelled SGS dissipation in both turbulent
and non-turbulent regions, and derive the corresponding conditional Smagorinsky
coefficient. The Smagorinsky coefficient corresponding to the turbulent region is
obtained according to

C2
S

∣∣
T

= −
〈
τ11S̃11

〉
T

2
√

15∆̃2
〈∣∣S̃3

11

∣∣〉
T

. (32)

5.1. Indicator function

A number of papers have examined the phenomenon of outer intermittency and doc-
umented inherent difficulties in discriminating between ‘turbulent’ and ‘non-turbulent’
portions of the flow based on hot-wire data (Corrsin 1955; Kovasznay, Kibens &
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Figure 13. A sample of signals illustrating the process of constructing the indicator function, at a
cross-stream distance of y/` = 1.97 (at x/D = 25). (a) The streamwise velocity, u1(x). (b) The local
(pseudo) dissipation, εloc(x) compared with the threshold level. (c) The resulting indicator function,
after applying the hold-length criterion.

Blackwelder 1970; Kollman 1982; Chen & Blackwelder 1978; Antonia & Atkinson
1974). Hedley & Keffer (1974) and Muck (1980) have studied fundamental questions
concerning discrimination and the dependence of conditional moments on threshold
levels. For present purposes, one of the simpler approaches will be used, consisting of
five steps that will be explained below in detail: smoothing of the data, establishing a
detector function, setting a threshold on this function, using the results to construct
an indicator function, and lastly, applying a hold length. Figure 13(a–c) illustrates the
approach based on a segment of the data.

First, and only for the purpose of constructing the indicator function, the velocity
is low-pass filtered at a scale 15η to eliminate unwanted noise. The focus of this study
is on SGS modelling with filtering at a much larger scale of ∆ = 100η, which should
mitigate any potential overlap in scale with the detector function.

Next, a variable is chosen which should ideally be representative of turbulence, the
‘detector function’ (Murliss and Bradshaw 1974). We employ the local dissipation cal-
culated according to εloc = 15ν(∂u1/∂x)2 and normalized with the average dissipation
on the centreline.

Once the detector function is chosen, a threshold level must be selected which must
be well above the maximum amplitude level of background noise. The threshold
selected in our example is εthres = 0.073εCL (where εCL is the mean dissipation at the
centreline), and is shown in figure 13(b) as a dashed line. While there are noise spikes
below the threshold, the spikes above the threshold are clearly due to turbulence and
not to noise. To verify this, data were taken without the cylinder present, at several
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Figure 14. Profile of intermittency function Γ (y).

y-values in the same manner as with the cylinder. The same procedure was used to
verify that the signal exhibited no spikes above the selected threshold level.

A preliminary indicator function, I∗(x), can then be locally turned on whenever
the detector function is greater than the threshold level. However, it is possible to get
spurious, short, dropouts (I∗ = 0) because of high-wavenumber (inner) intermittency.
The traditional approach to account for this effect has been to utilize a hold length, ξH .
Spurious dropouts are reduced by imposing that anytime a turbulent event contains
a non-turbulent event with a pulse-width length that is less than the hold length, the
non-turbulent event is ‘filled’ in and treated as a turbulent event. The hold length used
is ξH = 0.56L1 or equivalently ξH = 1.3× 103η, where L1 and η are the integral and
Kolmogorov scales at the wake centreline. As seen in figure 13(b), near x/L1 ≈ 0.3
there are two nearby events that have been identified as turbulent, whose separation is
less than ξH . The lull is thus ‘filled’ in and only one block of turbulence is left. While
reducing spurious dropouts, a risk is taken that a non-turbulent fluid parcel would
be falsely included as a turbulent event. This has probably occurred near x/L1 ≈ 5.2.
The effect of using different hold lengths, thresholds, and detector functions have
been explored in detail (O’Neil 1996), but details will not be repeated here.

Using the parameters introduced before (dissipation as the detector function, thresh-
old ε > 0.073εCL, ξH = 0.56L1) the indicator function I(x) is constructed for the entire
data at x/D = 25. Figure 14 shows the resulting profile of the intermittency function,
Γ (y) = 〈I〉, across the wake. With the indicator function, the conditionally averaged
subgrid dissipation rates may now be computed also.

5.2. Results

The surrogate SGS dissipation is computed at ∆ = 100η and is conditionally averaged.

Figure 15(a) shows profiles of −〈τ11S̃11〉T and −〈τ11S̃11〉N compared to the uncondi-

tional moment −〈τ11S̃11〉 across the wake. Near the centreline,
〈
τ11S̃11

〉
T
≈
〈
τ11S̃11

〉
. As

one moves towards the edge, the unconditional subgrid dissipation decays at a faster
rate than the SGS dissipation conditioned on turbulent events. This is expected since
the unconditional moment contains a significantly larger percentage of non-turbulent
events near the wake edge.

Figure 15(b) shows profiles of 〈
∣∣S̃11

∣∣3〉T and 〈
∣∣S̃11

∣∣3〉N compared to 〈
∣∣S̃11

∣∣3〉. The
conditional and unconditional averages display similar trends as figure 15(a), for the
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Figure 15. (a) The conditional subgrid dissipation for both turbulent and non-turbulent events. (b)
The conditional resolved cubed strain rate magnitude for both turbulent and non-turbulent events.
Triangles: unconditional moments, squares: non-turbulent averages (I = 0), circles: turbulent
averages (I = 1).

same reasons. However, the turbulent average decays less strongly at the edge than
in figure 15(a). This suggests that the Smagorinsky coefficient in the turbulent regions
again decays, at the outer portions of the wake.

Most noticeable is the negligible values of the non-turbulent averages compared
to the turbulent ones. The modelled SGS dissipation which was argued to possibly
contain contributions from the outer non-turbulent fluctuating strain is negligible
in the non-turbulent regions of the signal. The implications for the Smagorinsky
coefficient are immediate, since one can write

〈τ11S̃11〉 = Γ 〈τ11S̃11〉T + (1− Γ ) 〈τ11S̃11〉N, (33)

and neglecting the non-turbulent part one obtains 〈τ11S̃11〉 ≈ Γ 〈τ11S̃11〉T .
Given the results of figure 17(b), a similar approximation is warranted for the

Smagorinsky term,
〈∣∣S̃ ∣∣3〉 ≈ Γ〈∣∣S̃ ∣∣3〉

T
. Replacing in (32) yields that the Smagorinsky

coefficient valid inside the turbulent region is approximately equal to the unconditional
value, i.e. CS |T ≈ CS .

Therefore, conditional averaging based on outer intermittency does not yield a
more constant model coefficient across the wake. A number of sensitivity studies
were done (O’Neil 1996) and it was found that this conclusion is quite robust with
regard to the various parameters that entered the construction of the indicator
function.

6. Coherent structures and phase-averaging
In §4, the relationship between SGS dissipation and the mean velocity field of

the wake was explored. This was followed by an analysis of the effect of outer
intermittency on the Smagorinsky coefficient, with little dependency found. Another
feature of the flow field which is ubiquitous in turbulent shear flows is the presence of
large-scale coherent structures (Brown & Roshko 1974; Crow & Champagne 1971).
Townsend (1956) used measurements of the velocity autocorrelation function in a
cylinder wake to infer the presence of large quasi-deterministic eddies on top of
the turbulent scale range. Cantwell (1981) credits him with being the first to draw
a concrete picture of organized large-eddy motion and to realize its importance in
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controlling turbulent transport. Probably one of the most pronounced features of
the cylinder wake is the initial formation of organized alternating two-dimensional
vortices, the Kármán vortex street. Cantwell & Coles (1983), Hussain & Hayakawa
(1987, hereafter denoted HH) and Matsumura & Antonia (1993) have extensively
studied such wake structures from the point of view of phase-decomposed Reynolds
averaging, entrainment and transport.

LES has the advantage that such structures are (typically) resolved in the simulation,
and need not be modelled. A question that has not been addressed before in the
context of the plane turbulent wake is what effect coherent structures have on
features of the SGS dynamics such as SGS dissipation of kinetic energy. If there is
an effect, one wonders how this is represented by the various models. In this section,
we employ conditional averaging with respect to coherent structures in the wake to
study the conditional SGS dissipation and the model predictions.

6.1. Eduction via phase averaging

Roshko (1954) showed that clearly defined periodicity of the Kármán vortex street
seemed to disappear at about x/D = 50. Therefore, like the intermittency study
in §5, attention will remain focused solely on the data at x/D = 25. As can be
seen from figure 4, there is no peak evident at any wavenumber (frequency) for the
streamwise velocity component. Spectra of vertical velocity, u2, show a dominant
and compact peak at the Strouhal frequency. The peak frequency is fS = 87.9 Hz,
giving Strouhal number St = 0.181. For reference, Cantwell & Coles’ (1983) data
were at ReD = 1.4 × 105, x/D = 1–8, and they found St = 0.171. HH sampled at
ReD = 1.3× 104, x/D = 10, 20 and 40, and found St = 0.21. The Strouhal mode and
its neighbouring component on each side contain 20% of the total u2-variance. The
amount of energy density at fS is over ten times greater than in the neighbouring
incoherent large-scale turbulence. Spectra at other y/` also displayed a similar peak,
but of decreasing magnitude as y/` increases.

The ubiquity of the Strouhal peak at all y/` locations allows us to use phase
averaging to identify coherent structures. Moreover, the results of HH (who used
a vertical array of probes for simultaneous measurements across y) clearly show
that the conditional iso-u2 contours are vertically oriented, that is to say the iso-u2

structures are not inclined. This implies that the phases of the sinusoidal component
of u2 at fS are about the same at all y-locations. This in turn means that one may use
independent measurements at different y-locations by traversing a single probe, and
synchronizing the phases of the band-pass filtered u2 signal during post-processing.
This is the approach followed by Matsumura & Antonia (1993).

To minimize problems with spectral resolution of fS , long segment sizes should
be used to perform the notch filtering in a narrow band around fS = 87.9 Hz. On
the other hand, using very long segments has the disadvantage that phase-jitter in
the full signal is not accounted for. As a good compromise between these competing
requirements (see O’Neil 1996 for more details), a segment size of 213 points (a length
of 0.136 s) is used, containing 11–12 periods of the Strouhal signal. The local phase
(Φ = 0) is defined for each segment by the first upward zero crossing of the notch-
filtered u2 detector signal. No attempt is made to extrapolate outside the first and
last zero crossing of each 213 segment, since the amount of trimmed data is small.
Phase-averaged variables are evaluated by discretizing the phase Φ ∈ (0, 2π) into m
bins and conditionally averaging variables for each bin.
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Figure 16. (a) Convergence history (running averages) of −
〈
τ11S̃11|Φ

〉
(solid line, left-hand scale)

and
〈
|S̃11|3|Φ

〉
(dotted line, right-scale), in dimensional form. Data are at the centreline, at ∆ = 200η.

There were m = 10 bins used for the conditional averaging. (b) Root-mean-square of the last half
of the convergence history, normalized by the actual or modelled SGS dissipation.

6.2. Statistical convergence

The next concern is with statistical convergence of small-scale variables measured
with the single-wire probe. In earlier sections, all 2× 106 points at each location were
available for averaging. Now, only a fraction 1/m of the data is available at each
phase. One possible estimate for the convergence uncertainty is to evaluate ‘running
conditional averages’ using from a few to the total of 2× 106 m−1 points to compute
the averages. Figure 16(a) shows running averages of both the real and Smagorinsky
dissipation at a certain phase (Φ = 0), from data obtained at the centreline, with
a filter of ∆/η = 200. The discretization uses m = 10, meaning that 105 points are
available in each bin. Clearly the Smagorinsky term converges significantly better than
the real SGS dissipation. It is well known that convergence of turbulence odd-order

moments (such as
〈
τ11S̃11

〉
) is more difficult to achieve than for even-order (or the

absolute values of odd-order) moments. The degree to which such variables attain
their asymptotic value may be quantified by evaluating the r.m.s. of the running
averages over the last half of the data, that is, using from 106 m−1 to 2 × 106 m−1

points. Figure 16(b) plots this r.m.s. for the phase-averaged SGS and Smagorinsky
dissipations. The values are normalized with the respective mean SGS dissipation

averaged over all 2 × 106 points without phase averaging. While
〈∣∣S̃3

11

∣∣∣∣Φ〉 does
relatively well (with σ typically below 3%) at all phases, the actual SGS dissipation
has larger errors (with σ between 5% and 15%). The worst convergence is for the
bin at Φ = 0, for which the running averages are shown in (a). The other bins
display better convergence histories. Similar results were obtained by using m = 20
and m = 30. The main focus of the analysis of phase-averaged distributions will be
qualitative, for which the present convergence accuracy is deemed acceptable.

From here on, phase-averaged variables will be denoted by
〈
. . .
〉
c
, and the explicit

reference to phase Φ will be omitted for convenience.

6.3. Construction of pseudo-two-dimensional contours

Data at each y/` are phase discretized into m = 20 bins. The velocities are expressed
in a coordinate system convecting with the rollers at a speed Uc, defined as the
mean velocity at the y/` location at which the peak vorticity is observed (see below).
To enhance visual clarity, the data are extended in both the y- and the (pseudo)
streamwise direction. Periodicity is employed to plot a total range of phase equal to
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4π. Furthermore, the data are extended in the −y-direction by assuming symmetry
and phase reversal about the centreline (since measurements were only performed
on one side of the wake). Adding an additional bin at Φ = 4π (equal to the values
at Φ = 0), the total data matrix is then 41 × 29. To reduce jitter in the contours, a
moving two-dimensional average is applied to the fields, over the four neighbouring
bins (2 in each direction). The data matrix is thus reduced to 40× 28 bins.

6.4. Coherent velocity field

Figure 17 shows results pertaining to the phase-averaged velocity field. The
〈
u1

〉
c

and〈
u2

〉
c

components from the x-wires are plotted as velocity vectors. Note that only one-
quarter of the figure is measured, the other three quadrants being obtained as outlined
in the preceding section. The

〈
u1

〉
c

component is reduced by Uc = 22.54 m s−1, since
the frame is moving at Uc in the streamwise direction. The flow is from left to right.
There are three roll centres on the top, and two on the bottom. Conversely, there are
two saddle points above the centreline, and three below it. The agreement between
this phase-averaged vector field with the educed fields from HH is good, even though
some differences in the eduction method exist and the present Reynolds number is
higher. The vertical extent of the figures corresponds to 6.2`. The horizontal extent is
2×Uc/fS = 6.9` (using Taylor’s hypothesis with the roller convection velocity).

The coherent spanwise vorticity is defined as〈
ω3

〉
c
≡
∂
〈
u2

〉
c

∂x
−
∂
〈
u1

〉
c

∂y
, (34)

and is evaluated from the phase-averaged velocities. The vorticity is then normalized
by the wake half-velocity-defect height and wake deficit velocity, Us = 3.23 m s−1. The
minimum and maximum scaled vorticity is ±1.36, and is located at the roll centres,
yc/` = ±0.88. This gives the location at which Uc =

〈
u1 (yc)

〉
is obtained. Figure

17(a) shows the conditional spanwise vorticity contours. The vectors are superimposed
on the vorticity contours as an aid in locating the critical points and structure in
the field. The contours are given at ten discrete evenly spaced levels between the
minimum and maximum values. There seems to be good spatial agreement with the
contours from HH. They measured a peak vorticity magnitude of

〈
ω3

〉
c
/Sm = 6, where

SmD/U∞ = 0.105 was the maximum mean shear. The maximum mean shear for this
experiment is SmD/U∞ = 0.0611, so that the maximum strength of the vorticity field
is
〈
ω3

〉
c
/Sm = 1.90. This discrepancy is probably due to the differences in eduction

scheme. The vortices of HH are stronger, since unlike the phase-averaging used here,
HH only kept about 13% of the data, rejecting the rest as non-coherent events.

Contours of
〈
S11

〉
c

=
〈
∂u1/∂x

〉
c

are shown in figure 17(b). The coherent strain〈
S12

〉
c

is evaluated according to

〈
S12

〉
c

=
1

2

(
∂
〈
u1

〉
c

∂y
+
∂
〈
u2

〉
c

∂x

)
. (35)

Contours are shown in figure 17(c), and are substantially stronger than
〈
S11

〉
c
. Maxima

are located at the saddles, and
〈
S12

〉
c

is very weak at the roll centres.

The incoherent Reynolds shear stress −
〈
u′1u

′
2

〉
c

(where u′i = ui −
〈
u1

〉
c
) is shown

in figure 17(d). Again, data from the x-wires have been employed. Extrema are at
the saddle points, and contours are slightly inclined along the separatrix. This agrees
rather well with the results of HH. If −

〈
u′1u

′
2

〉
c

is normalized with U2
∞ instead, the
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Figure 17. Vectors: conditionally averaged velocity field in a frame moving with the rolls, in the
intermediate wake of a cylinder at x/D = 25. Velocity magnitude of arrows at corners is 2.24 m s−1.

Contours in (a) correspond to the phase-averaged spanwise vorticity
〈
ω3

〉
c
/(Us/`), (b) contours

of
〈
S̃11

〉
c
/(Us/`), (c) contours of

〈
S̃12

〉
c
/(Us/`), (d) contours of incoherent Reynolds shear stress

−
〈
u′1u

′
2

〉
c
/U2

s .

incoherent Reynolds stress intensity levels become ±0.24, as compared to the HH
results of ±0.5. Also, some discrepancies with the incoherent normal Reynolds stresses
of HH were observed. Again, discrepancies are due most probably to the less stringent
eduction scheme used here.

These results show that phase averaging applied to the current data set at x/D = 25
yields expected behaviour in terms of the coherent fields, and important incoherent
variables such as Reynolds shear stress.



282 J. O’Neil and C. Meneveau

(a) (b)

(c) (d )

–0.05 1.70 –0.035 1.61

0 1.40 0 1.19

Figure 18. Contours of phase-averaged surrogate SGS dissipation − 15
2
〈τ11S̃11〉c, normalized with

the centreline dissipation εCL. Results are for a Gaussian filter. (a) ∆/η = 300, (b) ∆/η = 200, (c)
∆/η = 100, (d) ∆/η = 50. As in figure 17 and in all subsequent figures, vectors correspond to
phase-averaged velocity.

6.5. Phase-averaged SGS dissipation

The phase-averaged SGS dissipation is now measured, using the single-wire data. As
before, subgrid-scale isotropy is assumed to hold also for the conditionally averaged
statistics, so that we evaluate the surrogate SGS dissipation according to〈

τij S̃ij
〉
c
≈ 15

2

〈
τ11S̃11

〉
c
. (36)

Results are shown in figure 18, normalized with the global viscous dissipation εCL at
the centreline. The different plots are for different filter sizes, from ∆/η = 300 down
to 50. The first conclusion that can be drawn from these results is that there is a clear
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Figure 19. Circles: degree of spatial non-uniformity of phase-averaged surrogate dissipation
rate along Φ, as a function of filter width. This non-uniformity is quantified by means of the
root-mean-square value at y/` = 0.88. Also shown (squares) is the global mean value of the surro-
gate SGS dissipation at y/` = 0.88, showing an approximate plateau near εCL, characteristic of an
inertial range.

correlation, or effect, of the coherent structure on the surrogate SGS dissipation field.
At any fixed y/` there are marked changes along the phase. While the peaks in overall
mean SGS dissipation were located at the centreline, the peaks in phase-averaged dissi-
pation are at the height of the roll centres. However, the peaks are concentrated at the
roll fronts, not their centres. It is tempting to raise the possibility that this is related to
secondary structures (ribs). The ribs are believed (see HH) to be stretched by the sad-
dle and then merge with the spanwise rolls at about the location where the surrogate
SGS dissipation peaks are located. It is quite possible that such merging is associated
with strong transfer of energy from large to small scales (or SGS dissipation).

Such an interpretation must be tempered with a reminder of the strong assumptions
that underlie the analysis (SGS isotropy and one-dimensional filtering). However, at
the very least we may conclude that there is a strong effect of coherent structure on the
subgrid dynamics. If SGS isotropy holds, then the results imply that there is a strong
effect on the SGS dissipation. If SGS isotropy does not hold, then the results imply
that there is a strong effect on the 1-1 component, and on small-scale anisotropy.

Another observation in figure 18 is that the distributions appear to become more
uniform in the horizontal (streamwise) direction as the filter size decreases. An
important element in the Kolmogorov phenomenology of the turbulence energy
cascade is that small scales become independent of large scales as the scale ratio
increases. In the present context, if the SGS scales were independent of large-scale
phenomena, one would expect uniform distributions of the phase-averaged SGS
dissipation in the streamwise direction. In order to quantify the spatial non-uniformity

of SGS dissipation, the root-mean-square of − 15
2

〈
τ11S̃11

〉
c

is computed over x (or phase
Φ), at a fixed y-location. Such an r.m.s., σ, can be computed for various filter lengths
according to

σ2 =

m
m∑
i=1

(
− 15

2

〈
τ11S̃11

∣∣Φi〉c)2

−
(

m∑
i=1

(
−
〈

15
2
τ11S̃11

∣∣Φi〉c))2

m (m− 1)
, (37)

where m = 20 bins. The y-location is y/` = 0.88, where
〈
ω3

〉
c

is maximum. The
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(a) (b)

(c) (d )

0.02 1.11 0.02 1.17

0.03 1.24 0.03 1.20

Figure 20. Contours of phase-averaged surrogate Smagorinsky dissipation 153/2(0.06∆)2〈|S̃11|3〉c,
normalized with the centreline dissipation εCL. Results are for a Gaussian filter. (a) ∆/η = 300, (b)
∆/η = 200, (c) ∆/η = 100, (d) ∆/η = 50.

results are shown in figure 19. The mean value − 15
2

〈
τ11S̃11

〉
is superimposed on the

same figure. With an order of magnitude change in ∆ (say between ∆ = 800η and
80η), there is only a 30% decrease in the spatial r.m.s. of SGS dissipation, in the
phase-averaged contours. This result shows that the approach to independence of
large and small scales, if it exists, is surprisingly slow. In agreement with the findings
of Piomelli et al. (1996) in channel flow, we conclude that there is a strong correlation
between coherent flow structures at large scales and SGS dissipation at much smaller
scales.
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(a) (b)

(c) (d )

–0.12 1.27 –0.05 1.36

–0.03 1.32 –0.01 1.20

Figure 21. Contours of phase-averaged surrogate dissipation of the similarity model, − 15
2
〈L11S̃11〉c,

normalized with the centreline dissipation εCL. Results are for a Gaussian filter. (a) ∆/η = 300, (b)
∆/η = 200, (c) ∆/η = 100, (d) ∆/η = 50.

6.6. Phase-averaged models of SGS dissipation

Next, the properties of SGS models are examined. The energy dissipation produced
by the Smagorinsky model, using (23) but phase-averaged, is shown in figure 20 for
different filter sizes. A constant Smagorinsky coefficient of CS = 0.06 was used, based
on the globally averaged results of §4.2. Clearly, the distribution is quite different
from the distribution of the SGS dissipation in figure 18. The peak values are more
uniformly distributed along the centreline, with some preference towards the roll
centres as opposed to their fronts. Thus, the presence of rollers appears to have a
much weaker effect on fluctuating strain (which enters directly in the Smagorinsky
model) than on the real nonlinear energy transfer.
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(a) (b)

(c) (d )

–0.42 2.29 –0.18 2.51

–0.05 2.62 –0.03 2.23

Figure 22. Contours of phase-averaged surrogate dissipation predicted by the dynamic Smagorin-

sky model, 153/2(∆2〈L11M11〉c/〈M11M11〉c) 〈|S̃11|3〉c, normalized with the centreline dissipation εCL.
Results are for a Gaussian filter. (a) ∆/η = 300, (b) ∆/η = 200, (c) ∆/η = 100, (d) ∆/η = 50.

The phase-averaged SGS dissipation using the similarity model is shown in figure
21. A value CL = 1.0 is used. As can be seen by comparing these distributions with
figure 18, the similarity model captures the qualitative features of the real distribution
much better than the Smagorinksy model. The spatial agreement with the actual SGS
dissipation is quite good with regions of peak forward scatter agreeing both in terms
of location and up to about 20% in intensity. This also agrees with the findings of
Piomelli et al. (1996) who found more realistic conditional flow structures based on
the similarity model than based on the Smagorinsky model.

The dynamic Smagorinsky model is investigated next, again at various filter lengths
between ∆ = 50η and 300η. We measure a conditional dynamic coefficient by phase
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averaging the numerator and denominator in (26). The predicted conditional SGS
dissipation is then obtained according to

− 153/2∆2 〈L11S̃11〉c
〈M11M11〉c

〈|S̃11|3〉c. (38)

Results are shown in figure 22, and are normalized by εCL. Comparing to the actual
SGS dissipation in figure 18 shows a qualitative resemblance. However, when com-
paring magnitudes, there are discrepancies: about 50% too much dissipation in the
front of the rolls, and too much backscatter in the outer part of the wake. In §4.4
it was found that the dynamic model (evaluated with the present assumptions and
one-dimensonal simplifications) gave a 25% overestimate of the global coefficient. A
significant discrepancy in conditional averages is therefore not too surprising. Never-
theless, we can conclude that the qualitative features of the real SGS dissipation are
reproduced much better with the dynamic model than with the regular Smagorinsky
model.

6.7. Similarity model with cutoff filter

It is well known that the correlation coefficient between the actual SGS stress and
the similarity model is high when using Gaussian and top-hat filters (well localized
in physical space), but is very low when using a cutoff filter in wave space (see
e.g. Liu et al. 1994). In that reference, this effect was attributed to ‘ringing’, namely
spatial oscillations that arise due to Gibbs phenomenon when filtering spatially local
structures with a cutoff filter. While this argument is plausible in explaining the low
correlation displayed by the cutoff-filtered similarity model during a priori tests, the
question remains whether there is any support for the similarity model if a cutoff
filter is used, as would be the case in a spectral simulation.

The phase-averaged dissipation predicted by the similarity model using cutoff filters
is examined, and is compared with the real dissipation where the stress and strain
rate are also evaluated using the cutoff filter. The comparison is performed at filter
lengths of ∆ = 200η and 50η. Figure 23 displays the results, again normalized by εCL.
At larger filter sizes the results are quite comparable to those of the Gaussian filter,
although the SGS magnitudes are slightly larger at the peaks. The same is true at
∆ = 50η, except for the fact that some additional oscillations (jitter) can be discerned
in the contours. Also, there are more discrepancies between the modelled and real SGS
dissipation than for the case of Gaussian filter shown in figure 18. Nevertheless, the
qualitative features of the conditional SGS dissipation are still reproduced. The model
predicts local peaks of forward SGS dissipation at the roll fronts. From the point
of view of phase-averaged SGS dissipation, this result suggests that the similarity
modelling approach has merit (at least over the plain Smagorinsky model) even when
dealing with spectral cutoff filters.

6.8. Phase-decomposed SGS dissipation

In the previous section, the dissipation of the entire resolved kinetic energy field
was studied with phase averaging. In this section, the resolved field is first phase
decomposed to exclude the coherent field from the interaction between resolved and
unresolved scales.

The phase-averaged SGS dissipation may be decomposed as follows:

−
〈
τij S̃ij

〉
c

= −
(〈
τij
〉
c

〈
S̃ij
〉
c

+
〈
τ′ij S̃

′
ij

〉
c

)
, (39)
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(a) (b)

(c) (d )

–0.02 1.72 –0.08 2.11

1.26 0 1.730

Figure 23. Contours of phase-averaged surrogate SGS dissipation using the sharp cutoff instead

of Gaussian filter. (a) Real dissipation − 15
2
〈τ11S̃11〉c at ∆/η = 200. (b) Dissipation predicted by

similarity model at ∆/η = 200 with spectral cutoff filter. (c) Real dissipation at ∆/η = 50. (d)
Similarity model with cutoff filter at ∆/η = 50.

where τ′ij = τij − 〈τij〉c and S̃ ′ij = S̃ij −
〈
S̃ij
〉
c
. The first term in (39) may be interpreted

as the energy that is transferred from (or to) the coherent field towards (or from) the
subgrid scales, while the second represents energy transferred between all remaining
resolved scales and the SGS range.

To see more clearly that −
〈
τij
′S̃ ′ij
〉
c

is indeed the energy dissipation from resolved,
but incoherent, motion to unresolved motion, an incoherent resolved kinetic energy
equation is derived, following Reynolds & Hussain (1972). Denoting the incoherent
part of the velocity as ũ′i, one may define the incoherent, but resolved, kinetic energy
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–0.23 0.250 –0.02 1.40

Figure 24. Contours of phase-decomposed surrogate SGS dissipation. (a) Contribution from coher-

ent part, − 15
2

〈
τ11

〉
c

〈
S̃11

〉
c
, corresponding to energy flux between the coherent field and the subgrid

scales. (b) Energy flux between incoherent (but resolved) field and subgrid scales, − 15
2

〈
τ11
′S̃ ′11

〉
c
.

Results are for Gaussian filter, at ∆/η = 200.

according to
1
2
ẽ2 = 1

2
ũ′iũ
′
i. (40)

One starts with the resolved momentum equation for the total filtered velocity ũi.
Then, all of the primitive variables including the SGS stress are decomposed into a
coherent and incoherent part. A second equation is formed by phase averaging and
the difference is taken to obtain an equation for the incoherent resolved velocity:

∂ũ′i
∂t

+
〈
ũj
〉
c

∂ũ′i
∂xj

= − ∂

∂xj

(
p̃′

ρ
δij −

〈
ũ′iũ
′
j

〉
c

+ ũ′iũ
′
j +
〈
ũ′i
〉
c
ũ′j + τij

′ − 2νS̃ ′ij

)
. (41)

Multiplying by ũ′i, phase averaging, neglecting the viscous dissipation, and not writing
the transport term in detail yields

∂

∂t

〈
1
2
ẽ2
〉
c

+
〈
ũj
〉
c

∂

∂xj

〈
1
2
ẽ2
〉
c

= −
〈
ũ′iũ
′
j

〉
c

〈
S̃ij
〉
c

+
〈
τij
′S̃ ′ij
〉
c
− ∂

∂xj

〈
...
〉
c
. (42)

The term −
〈
ũ′iũ
′
j

〉
c

〈
S̃ij
〉
c

is the production of resolved incoherent kinetic energy due to
coherent strain (or dissipation of coherent energy due to resolved incoherent motion).

The term
〈
τij
′S̃ ′ij
〉
c

is indeed the sink (if negative) of resolved, but incoherent, kinetic
energy due to the SGS stress.

Next, phase-averaged distributions of − 15
2

〈
τ11

〉
c

〈
S̃11

〉
c

and − 15
2

〈
τ11
′S̃ ′11

〉
c

are evalu-
ated and shown in figure 24. The filter size was ∆ = 200η, using a Gaussian filter. It
is interesting to note that the levels of the coherent part reach only 16% of the peak
total dissipation (in figure 18), which while not negligible, is not a dominant effect.

The incoherent SGS dissipation − 15
2

〈
τ′11S̃

′
11

〉
c

is shown in figure 24(b). Compared
to figure 18, one can see that there is less streamwise modulation by the coherent
structures, especially near the outer edges of the wake where the contour lines are
more horizontal. Nevertheless, near the centreline, the contours still display significant
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modulation. The peak still occurs near the roll fronts, but closer to their centre than
the peaks of full SGS dissipation.

We conclude that there are significant effects of the coherent structure on the SGS
dissipation, even when only considering the incoherent portion of this variable.

7. Summary and conclusions
The primary motivation of this work is to supplement existing numerical a priori

and a posteriori studies of the SGS stress and models with a priori experimental results
at high Reynolds numbers, in a fairly complex flow field with outer intermittency and
regions of coherent structure.

The first part of the study involved globally averaged quantities across the wake
of a cylinder, at four downstream locations. Owing to the need to maximize the
turbulence Reynolds number, a fairly large cylinder was chosen leading some features
of the downstream development of the wake (e.g. r.m.s. velocities) to exceed those of
a canonical free wake.

Based on the measurements, comparisons were made between the actual and mod-
elled mean SGS dissipation. Also, the coefficients of the Smagorinsky and similarity
models, as well as those obtained from the dynamic Smagorinsky model were mea-
sured. The surrogate dissipation rate profiles from x/D = 25 to 100 agreed out to the
wake half-width, `, when scaled with the centreline total dissipation rate. For y > `,
the profiles for lower x/D decayed more slowly. When corrected for the effects of one-
dimensional filtering, the measured Smagorinsky coefficient fell inside the expected
range of 0.1 to 0.12. The viability of the Smagorinsky model was confirmed by show-
ing that the constancy of CS was relatively insensitive to variations of the Reynolds
number, filter length, and downstream location. A weak cross-stream decrease of CS
was observed for filter scales above ∼ 0.01L1, meaning that the constant-coefficient
Smagorinsky model slightly overpredicts SGS dissipation in the outer wake, unless fil-
ter scales are about two or more orders of magnitude smaller than the integral scale.
This trend is reminiscent of the well-known overprediction of the −u′v′ Reynolds
stress using the mixing-length model in the plane wake. However, conditional av-
eraging based on outer intermittency to eliminate possible effects of non-turbulent
patches did not significantly affect this trend. This leads to the conclusion that the
weak decrease in CS is not due to outer intermittency but to an inherent difference in
the structure of turbulence, or to anisotropy effects which we could not capture with
the instrumentation, the surrogate dissipation, and limitations of one-dimensional
filtering.

The similarity model was insensitive to changes in downstream distance, Reynolds
number, and filter length, as long as both ∆ and 2∆ remained well inside the inertial
range. As expected, the correlation for the similarity model was considerably higher
than the Smagorinsky model. The dynamic Smagorinsky coefficient was found to be
25% higher than the traditional Smagorinsky coefficient, but agreed with its basic
trends of a slight decline in the outer part of the wake.

Following the analysis of globally averaged variables, the interaction of coherent
structure and the dynamics of the subgrid motion were studied. The presence of
large-scale coherent structures was shown to strongly affect the distribution of the
measured surrogate for SGS energy dissipation. This was the case even after phase
decomposing the SGS stress and strain rates, to extract the coherent part of the field.
The surrogate SGS dissipation structure was found to become more evanescent with
decreasing filter size, though much of the structure remained even at the small-scale
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end of the inertial range, ∆ = 20η. This trend suggests that to reach independence
between large and small scales requires very large scale separations. It is important
to recall again that the observed changes in surrogate dissipation due to coherent
structures may not only reflect the actual distribution of SGS dissipation, but could
also reflect varying deviations from the assumed SGS isotropy. At any rate, our results
clearly show that the coherent structures have a direct effect on SGS dynamics,
either in terms of true SGS dissipation or SGS anisotropy (or a combination of
both).

The Smagorinsky model was unable to reproduce the observed distribution of
surrogate SGS dissipation with respect to the coherent structures, while the similarity
model captured the main features as long as the filters were inside the inertial range.
The dynamic Smagorinsky model, with the coefficient obtained from phase averaging,
did reproduce qualitative features of the (surrogate) SGS dissipation. The similarity
model with spectral cutoff filtering showed essentially zero correlation with the real
stress field, but did display the main characteristics of the structure of surrogate SGS
dissipation.

An important as yet unresolved question is what happens further downstream (i.e.
at x/D > 50) when the organized Kármán vortex street disappears. It is believed that
there still are ‘coherent structures’ but that they are no longer nicely periodic, i.e. they
are not discernible from phase averaging. How much of present results carry over
to the relationship between such non-periodic large-scale structures and the subgrid
scales is not known, and clearly deserves further study.

In summary, present results provide detailed evidence that SGS modelling based
on ‘learning’ from resolved scales (such as in the dynamic or similarity models)
should lead to more realistic predictions than the constant-coefficient eddy-viscosity
model, when turbulence is spatially complex and when coherent structures affect the
SGS dynamics directly. At the level of phase-averaged dissipation, both the dynamic
Smagorinsky and the similarity models appeared to work well, so that any linear
combination of the two should also provide a good model to reproduce phase-
averaged dissipation. In recent years, such mixed models have shown promise in LES
(e.g. Zang et al. 1993; Wu & Squires 1995; Vreman et al. 1994). The mixed model is
also advantageous to model the response of SGS turbulence to rapid distortion (Liu
et al. 1997).

We thank Professors O. Knio and N. Jones for useful comments and discussions.
This work was funded by the National Science Foundation (grant CTS-9408344) and
the Office of Naval Research (grant N00014-92-J-1109). Data analysis and manage-
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CTS-9506077). Some initial analysis was done at the Pittsburgh Supercomputing
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